Combined Homotopy and Galerkin Stability Analysis of Mathieu-Like Equations
نویسندگان
چکیده
We propose a homotopy analysis method in combination with Galerkin projections to obtain transition curves of Mathieu-like equations. While constructing homotopy, we think convergence-control parameter as function embedding and call it function. Homotopy provides relation between the parameters Mathieu equation that also includes free arising from generate extra nonlinear algebraic equations using solve numerically for arriving at curves. demonstrate usefulness our case three distinct versions linear by carefully choosing auxiliary operators. Since does not demand smallness any parameters, approach has advantage over perturbation methods determining covering large region space. The is applicable wide variety parametrically excited oscillators.
منابع مشابه
Solving a System of Linear Equations by Homotopy Analysis Method
In this paper, an efficient algorithm for solving a system of linear equations based on the homotopy analysis method is presented. The proposed method is compared with the classical Jacobi iterative method, and the convergence analysis is discussed. Finally, two numerical examples are presented to show the effectiveness of the proposed method.
متن کاملHomotopy analysis and Homotopy Pad$acute{e}$ methods for two-dimensional coupled Burgers\' equations
In this paper, analytic solutions of two-dimensional coupled Burgers' equations are obtained by the Homotopy analysis and the Homotopy Pad$acute{e}$ methods. The obtained approximation by using Homotopy method contains an auxiliary parameter which is a simple way to control and adjust the convergence region and rate of solution series. The approximation solutions by $[m,m]$ Homotopy Pad$acute{e...
متن کاملSolution and stability analysis of coupled nonlinear Schrodinger equations
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied and Computational Mathematics
سال: 2022
ISSN: ['2199-5796']
DOI: https://doi.org/10.1007/s40819-022-01371-9